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Abstract
Quantum entropy inequalities are studied. Some quantum entropy inequalities
are obtained by several methods. For an entanglement breaking channel, we
show that the entanglement-assisted classical capacity is upper bounded by
log d. A relationship between entanglement-assisted and one-shot unassisted
capacities is obtained. This relationship shows the entanglement-assisted
channel capacity is upper bounded by the sum of log d and the one-shot
unassisted classical capacity.

PACS number: 03.67.Lx

1. Introduction

Quantum information theory has been attracting a great deal of interest. Several capacities
of quantum channels have been proposed and studied, such as the Holevo–Schumacher–
Westmoreland channel capacity [1, 2] and the recently proposed entanglement-assisted
classical capacity [3, 4] and adaptive classical capacity [5]. In studying capacities of quantum
channels, the quantum entropy inequalities are very important. In [6–11], a survey of quantum
entropy inequalities is presented. Some of these quantum inequalities are independent but
equivalent, i.e. they are necessary and sufficient conditions to each other [8]. In some cases,
the results can be obtained much easily from one quantum entropy inequality than from others.
So, all of these inequalities are necessary. It will be better if we can find more inequalities. In
this paper, we study some of these quantum entropy inequalities and find their applications in
channel capacities.

The additivity of classical capacity of quantum channels is one of the fundamental
problems in studying the quantum information theory. The additivity of classical capacity of
several special channels is proved, such as unital qubit channels [12], depolarizing channels
[13] and entanglement breaking channels [14]. By using the strong concavity of von Neumann
entropy directly, we give a simple proof of the additivity of classical capacity of entanglement
breaking channels.
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It is known that the classical capacity of quantum channels may be enhanced with
prior entanglement such as the super-dense coding protocol [15]. A general theorem called
entanglement-assisted classical capacity was proposed and proved recently concerning the
classical capacity of quantum channels with the help of shared entanglement between the
sender and the receiver [3, 4]. It can be expected that if the channel itself is entanglement
breaking, its entanglement-assisted classical capacity has less advantage than other channels.
We show in this paper that, for an entanglement breaking channel, the entanglement-assisted
classical capacity is upper bounded by log d while generally we have an extra term χ .

A simple proof of the entanglement-assisted channel capacity was given by Holevo [16],
who also found the entanglement-assisted channel capacity is upper bounded by the sum
of log d and the unassisted classical capacity. We shall show further in this paper that the
entanglement-assisted channel capacity is upper bounded by the sum of log d and the one-shot
unassisted classical capacity. This result also eliminates one possible way in which one might
find an example of non-additivity of the classical capacity.

2. Equivalent quantum entropy inequalities

There are four equivalent quantum entropy inequalities as reviewed by Ruskai [8]. In this
section, we point out that we can add another equivalent entropy inequality.

First, let us introduce some definitions. The von Neumann entropy is defined as

S(ρ) ≡ −Tr(ρ log ρ) (1)

where ρ is the density operator. The relative entropy is defined as

S(ρ‖σ) ≡ Tr ρ(log ρ − log σ). (2)

In a recent review, Ruskai listed the first four equivalent quantum entropy inequalities as
follows (see [8] and the references therein):

(i) Monotonicity of relative entropy under completely positive, trace preserving maps:

S(�(ρ)‖�(σ)) � S(ρ‖σ). (3)

(ii) Monotonicity of relative entropy under partial trace:

S(ρA‖σA) � S(ρAC‖σAC). (4)

(iii) Strong subadditivity of von Neumann entropy I and II, where I and II are equivalent:

(I) S(ρA) + S(ρB) � S(ρAC) + S(ρBC);
(5)

(II) S(ρABC) + S(ρB) � S(ρAB) + S(ρBC).

(iv) Joint convexity of relative entropy:

S

(∑
i

piρ
i

∥∥∥∥∥
∑

i

piσ
i

)
�

∑
i

piS(ρi‖σ i). (6)

(v) Actually, we can add another equivalent inequality, concavity of conditional entropy:

S

(∑
i

piρ
i
AB

)
− S

(∑
i

piρ
i
B

)
�

∑
i

pi

[
S
(
ρi

AB

) − S
(
ρi

B

)]
. (7)
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The last inequality was deduced from (iv), joint convexity of relative entropy in [6]. Then it
was used to deduce inequality (iii), strong subadditivity. So, inequality (v), the concavity of
conditional entropy, is an equivalent inequality with the other four inequalities.

In the textbook of Nielsen and Chuang [6], inequality (v) is obtained from (iv), the
joint convexity. Next, we show two other methods to obtain the concavity of conditional
entropy. First, we use (ii), monotonicity of relative entropy under partial trace. Suppose
ρAB = ∑

ipiρ
i
AB , so ρB = ∑

ipiρ
i
B . From inequality (ii), we have

S
(
ρi

B

∥∥ρB

)
� S

(
ρi

AB

∥∥ρAB

)
. (8)

So, the average of relative entropies has the inequality∑
i

piS
(
ρi

B

∥∥ρB

)
�

∑
i

piS
(
ρi

AB

∥∥ρAB

)
. (9)

From the definition of relative entropy, we obtain (v),

S(ρAB) − S(ρB) �
∑

i

pi

[
S
(
ρi

AB

) − S
(
ρi

B

)]
. (10)

Secondly, we also use the joint convexity to deduce (v), but by a different method. The joint
convexity of relative entropy means

S

(∑
i

piρ
i
AB
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∑

i

piρ
i
B

)
�

∑
i

piS
(
ρi

AB

∥∥ρi
B

)
. (11)

By definition, we have

−S(ρAB) + S(ρB) � −
∑

i

pi

[
S
(
ρi

AB

) − S
(
ρi

B

)]
. (12)

This is exactly (v), the concavity of conditional entropy.
Since these five inequalities are equivalent, we can obtain any one of them from one of the

other four inequalities. Recently, Bennett et al proposed and proved the entanglement-assisted
channel capacity [3, 4]. Holevo subsequently gave a modified proof [16], and one of the
simplifications is due to the replacement of strong subadditivity by concavity of conditional
entropy, i.e., the fifth inequality was used directly in [16] rather than the third inequality used
in [4], though they are equivalent.

3. Strong concavity of von Neumann entropy

In this section, we propose the following quantum entropy inequality: strong concavity of von
Neumann entropy,

S

(∑
i

piρ
i
A ⊗ ρi

B

)
� max

{∑
i

piS
(
ρi

A

)
+ S
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)
,
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piS
(
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B

)
+ S

(∑
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piρ
i
A

)}
.

(13)

To prove this inequality, we need to show that both the following inequalities hold,

S
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piρ
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B

)
�
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(
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)
+ S
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and

S
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B

)
�
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We denote ρA = ∑
ipiρ

i
A, ρB = ∑

ipiρ
i
B .
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In the following, we present several methods to derive the strong concavity of quantum
entropy.

(A) Due to (ii), monotonicity of relative entropy, we have

S
(
ρi

A

∥∥ρA

)
� S

(
ρi

A ⊗ ρi
B
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∑

i

piρ
i
A ⊗ ρi

B

)
. (16)

Taking the average with probability pi , we have
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)
�
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 . (17)

So, we have

−
∑
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piS
(
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)
+ S(ρA) � −
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B

)
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Thus we obtain the strong concavity.
(B) Due to (iv), joint convexity of relative entropy,

S

(∑
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piρ
i
A ⊗ ρi

B
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∑
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i
A

)
�

∑
i

piS
(
ρi
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B
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A

)
= −

∑
i

piS
(
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B

)
. (19)

We have the strong concavity of von Neumann entropy.
(C) Due to (v), concavity of conditional entropy, we have

S

(∑
i

piρ
i
A ⊗ ρi

B

)
− S

(∑
i

piρ
i
A

)
�

∑
i
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[
S
(
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A ⊗ ρi
B

) − S
(
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A

)]
=

∑
i

piS
(
ρi

B

)
. (20)

Then we arrive at the strong concavity. Since the situations for ρA and ρB are the same, we
know that equation (13) holds. The strong concavity of von Neumann entropy can be obtained
simply from some well-known quantum entropy inequalities. It should have been noted and
applied implicitly or explicitly [6, 9]. We present it here since we will use it in the next
sections to obtain some results.

4. Application of strong concavity in the channel capacity of an entanglement
breaking channel

Recently, Shor proved the additivity of the classical capacity of an entanglement breaking
quantum channel [14]. Both c-q (classical–quantum) and q-c (quantum–classical) channels
are special cases of entanglement breaking channels. And the entanglement breaking channel
can be expressed as a q-c-q channel. Other properties and conjectures for an entanglement
breaking channel can be found in [17]. We next give a simple proof of the additivity of the
channel capacity of an entanglement breaking channel by directly using the strong concavity
inequality though there are no essential differences from Shor’s original proof.
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An entanglement breaking channel � means (I ⊗ �)ρAB is always a separable state,
which can be written as [18]

(I ⊗ �)ρAB =
∑

i

piρ
i
A ⊗ ρi

B. (21)

So we know �(ρB) = ∑
ipiρ

i
B . Suppose

∑
j qjρ

j

AB = ρAB are the optimal signal states
for channel � ⊗ �, where � is an arbitrary quantum channel. The Holevo–Schumacher–
Westmoreland channel capacity χ∗(� ⊗ �) takes the following form

χ∗(� ⊗ �) =
∑

j

qjS


(� ⊗ �)

(
ρ

j

AB

) ∥∥∥∥∥∥(� ⊗ �)


∑

j

qjρ
j

AB







= −
∑

j

qjS

(∑
i

pji�
(
ρ

ji

A

) ⊗ ρ
ji

B

)
+ S((� ⊗ �)(ρAB)). (22)

Then using the strong concavity inequality for the first term and subadditivity for the second
term, we have

χ∗(� ⊗ �) � −
∑
ji

qjpjiS
(
�

(
ρ

ji

A

)) −
∑

j

qjS

(∑
i

pjiρ
ji

B

)
+ S(�(ρA)) + S(�(ρB))

=
∑
ji

qjpjiS
(
�

(
ρ

ji

A

)∥∥�(ρA)
)

+
∑

j

qjS
(
�

(
ρ

j

B

)∥∥�(ρB)
)

� χ∗(�) + χ∗(�). (23)

Since the classical capacity of a quantum channel is strong additive, we know the capacity of
an entanglement breaking channel is additive,

χ∗(� ⊗ �) = χ∗(�) + χ∗(�). (24)

5. Application of strong concavity of von Neumann entropy in entanglement-assisted
channel capacity for an entanglement breaking channel

Recently, Bennett et al [3, 4] (BSST theorem) proposed and proved the entanglement-assisted
channel capacity in terms of quantum mutual information. Holevo [16] then gave a simple
proof. The BSST theorem states that the classical capacity of the entanglement-assisted
channel is written in the form

CE(�) = maxρA∈Hin
S(ρA) + S(�(ρA)) − S((� ⊗ I )(|�AB〉〈�AB |)) (25)

where |�AB〉 is a purification of ρA.
Holevo [16] pointed out that there is a relationship between the entanglement-assisted

and unassisted capacities,

CE(�) � C(�) + log d (26)

where d is the dimension of the Hilbert space Hin. This result can also be obtained from [19].
If the additivity of the classical capacity holds, we can replace C(�) by one-shot classical
capacity χ∗(�). Since Shor [14] already proved that the classical capacity of an entanglement
breaking channel is additive, for entanglement breaking channel �, we have

CE(�) � χ∗(�) + log d. (27)
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Next, we show that a tighter upper bound can be obtained for an entanglement breaking
channel. Because � is an entanglement breaking channel, we have

(� ⊗ I )(|�AB〉〈�AB |) =
∑

i

piρ
i
A ⊗ ρi

B (28)

where both ρi
A and ρi

B are pure states. By strong concavity of von Neumann entropy, we know

S((� ⊗ I )(|�AB〉〈�AB |)) �
{

S
( ∑

ipiρ
i
A

)
+

∑
ipiS

(
ρi

B

) = S(�(ρA))∑
ipiS

(
ρi

A

)
+ S

( ∑
ipiρ

i
B

) = S(ρB) = S(ρA).
(29)

Substituting these relations into the BSST theorem (25), we have

CE(�) � maxρA∈Hin
S(ρA) � log d (30)

or

CE(�) � maxρA∈Hin
S(�(ρA)) � log d. (31)

So, we know for an entanglement breaking channel, the entanglement-assisted classical
capacity has an upper bound

CE(�) � log d. (32)

Comparing this relation with the general relation (27), we find that the term χ∗(�) does not
appear here though it is not always zero. So, we show there is an upper bound for CE(�) when
� is an entanglement breaking channel. It might be interpreted as showing, since the channel
itself is entanglement-breaking, the prior entanglement may not help much in increasing the
classical capacity.

6. Relationship between entanglement-assisted and one-shot unassisted capacities

As already pointed out in last section, Holevo [16] found the entanglement-assisted channel
capacity is upper bounded by the sum of log d and the unassisted classical capacity as relation
(26). If the classical channel capacity is additive, which is a long-standing conjecture, we
have the inequality

CE(�) � χ∗(�) + log d. (33)

For an arbitrary quantum channel �, if this relation does not hold, this means C(�) > χ∗(�),
thus the additivity conjecture of classical channel capacity does not hold. So, (33) may provide
a criterion to test the additivity problem of classical capacity. Since the additivity of classical
capacity is one of the most fundamental problems in the quantum information processing
field, it should be examined whether this method really works or not. We show in this section
that relation (33) always holds for an arbitrary quantum channel �. Thus it cannot provide a
counterexample for additivity of classical capacity of quantum channels.

We assume that ρA have the following pure state decomposition:

ρA =
∑

j

qj

∣∣�̃j

A

〉〈
�̃

j

A

∣∣. (34)

Using the same technique as that of [14], we define

|�̃ABC〉 =
∑

j

√
qj

∣∣�̃j

A

〉|j 〉B |j 〉C. (35)

So, we have

(� ⊗ IBC)(|�̃ABC〉〈�̃ABC |) =
∑
jj ′

√
qjqj ′�

(∣∣�̃i
A

〉〈
�̃

j ′
A

∣∣) ⊗ |j 〉B〈j ′| ⊗ |j 〉C〈j ′|. (36)
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With the help of the quantum entropy inequality [20], we obtain

S((� ⊗ IBC)(|�̃ABC〉〈�̃ABC |)) � S((� ⊗ IB)(ρ̃AB)) − S(ρ̃C)

= S


∑

j

qj�
(∣∣�̃j

A

〉〈
�̃

j

A

∣∣) ⊗ |j 〉B〈j |

 − S


∑

j

qj |j 〉C〈j |



=
∑

j

qjS
(
�

(∣∣�̃j

A

〉〈
�̃

j

A

∣∣)). (37)

We know

S ((� ⊗ I )(|�AB〉〈�AB |)) = S((� ⊗ I )(|�̃ABC〉〈�̃ABC |)) (38)

where both |�AB〉 and |�̃ABC〉 are purifications of ρA. From BSST theorem (25), we have

CE(�) = maxρA∈Hin
S(ρA) + S (�(ρA)) − S ((� ⊗ I )(|�AB〉〈�AB |))

� maxρA∈Hin
S(ρA) + S(�(ρA)) −

∑
j

qjS
(
�

(∣∣�̃j

A

〉〈
�̃

j

A

∣∣))
� log d + χ∗(�). (39)

Thus, we conclude, for an arbitrary quantum channel �, the entanglement-assisted and one-
shot unassisted capacities have the relationship

CE(�) � χ∗(�) + log d. (40)

If the additivity of classical capacity holds, this relation is the same as relation (26). If the
additivity does not hold for classical capacity, this relation is tighter than (26). This is the
main result of this paper.

7. Summary

In summary, we pointed out that another quantum entropy inequality, the concavity of
conditional entropy inequality, is equivalent to four other equivalent quantum entropy
inequalities. Using directly the strong concavity of von Neumann entropy, the additivity
of capacity of entanglement breaking channels can be proved simply. We also showed, for
an entanglement breaking channel, that the entanglement-assisted channel capacity is upper
bounded by log d which is tighter than the general case. A new upper bound is obtained for the
entanglement-assisted classical capacity, the entanglement-assisted classical capacity is upper
bounded by the sum of log d and the one-shot unassisted capacity. This result also eliminates
one possible way to test the non-additivity of classical capacity.

Note added. Since this paper was posted, Holevo has presented another proof of (33) in [21].
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